210 research outputs found

    New 5-Phase Concentrated Winding Machine with Bi-Harmonic Rotor for Automotive Application

    Get PDF
    For a power range from 10 to 30 kW, 5-phase machines are well adapted to low-voltage (48V) supply thanks to their reduced current per phase. For three-phase machines but with higher voltages (>120V), machines with a number of slots per pole and per phase spp equal to 0.5 (as the 12slots/8poles combination) are widely used in hybrid automotive applications when a wide speed range is required. The reason is that the value of spp=0.5 guarantees no sub-harmonics and thus induces low level of permanent magnet rotor losses. In this paper a 20slots/8poles/5phases machine is chosen. With a winding factor of only 0.588 for the first harmonic, this machine is only interesting if its high third harmonic winding factor (0.951) is used. Thus, a new bi-harmonic rotor structure is presented. Thanks to adequate control with flux-weakening and ratio r between first and third harmonic currents, the maximum torque versus speed characteristic is determined.Projet ADEME/MHYGAL

    Right Harmonic Spectrum for the back-electromotive force of a n-phase synchronous motor

    Get PDF
    This paper deals with a vector control of n-phase permanent magnet synchronous machine. To use control algorithms already developed for sine-wave 3-phase machines, the spectrum of back electromotive force (EMF) must contain only odd 2k+1 harmonics which verify the following inequality, 1≀ 2k +1< n . In an experimental vector control of a 5-phase drive, two usual algorithms of sine-wave 3-phase machine are thus used to supply a machine with trapezoidal waveform back EMF. In this case, the first and third harmonics are used to produce torque: the other harmonics, and particularly the 7th one, induce effects as torque ripples and parasitic currents

    Analytical Model of Magnet Eddy-Current Volume Losses in Multi-phase PM Machines with Concentrated Winding

    Get PDF
    Thanks to IEEE. The original PDF of the article can be found at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6342330&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6342330 MHYGALE, project managed by VALEO-EEMthis paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are studied according to the ratio between each harmonic wavelength and magnet pole width (following flux density variation). Then various losses sub-models are deduced. Finally, using this analytical model, magnet volume losses for many slots/poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Besides, in order to validate the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.MHYGALE/ADEM

    General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding

    Get PDF
    this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculationsProjet MHYGALE/ADEM

    Enhanced Torque Control of a PMSM Supplied by a Four-Leg Voltage Source Inverter Using the Third Harmonic

    Get PDF
    This paper investigates an electrical drive composed of a four-leg voltage source inverter and a three-phase starconnected surface permanent magnet synchronous machine with concentrated windings. The inverter fourth leg is clamped to the neutral point of the machine. We find the current references leading to smooth torque and maximal torque per ampere operation in the presence of a third harmonic electromotive force component. We further analyze the advantages of the proposed topology in terms of torque increase and dc-link voltage requirements

    Impact of PWM strategies on RMS current of the DC-link Voltage Capacitor of a dual-three phase drive

    Get PDF
    The major drawback of usual dual three-phase AC machines, when supplied by a Voltage Source Inverter (VSI), is the occurrence of extra harmonic currents which circulate in the stator windings causing additional losses and constraints on the power component. This paper compares dedicated Pulse Width Modulation (PWM) strategies used for controlling a dual three phase Permanent Magnet Synchronous machine supplied by a six-leg VSI. Since the application is intended for low-voltage (48V) mild-hybrid automotive traction, an additional major constraint arises: the compactness of the drive related to the size of the DC-bus capacitor. Thus, the PWM strategy must be chosen by taking into consideration its impact on both, the motor and the RMS value of DC-bus current

    General modeling of the windings for multi-phase ac machines

    Get PDF
    This paper, which deals with the winding modeling of ac multi-phase machines with a regular distribution of the stator slots, details an original matrix modeling of the stator winding. First, the properties of the balanced multi-phase windings (with integral-slot and fractional-slot patterns) are analysed. The winding function approach, one of the most common way to model the winding distribution effects on the stator rotating field, is then introduced. For multi-phase machines, it will be shown that the pole number generated by the winding distribution depends on a new parameter: the circularity index. The discrete nature of the winding, imposed by the stator slots, leads to the development of a discrete modeling of the winding obtained from sampling the winding function: two matrices, the winding function matrix and the distribution function matrix, are introduced to characterize the multi-phase winding. This matrix approach is thus a concise way to calculate the winding factors and to estimate the set of self and mutual stator inductances for smooth air gap multi-phase machines. A particularly original method of obtaining an analytical expression for the leakage mutual inductance is described. The results are validated with two experimental 5-phase PM machines by using experimental measurements and numerical simulations

    Vectorial formalism for analysis and design of polyphase synchronous machines

    Get PDF
    A vectorial formalism for analysis and design of polyphase synchronous machines without reluctance and saturation effects is described. We prove the equivalence of such a machine with a set of magnetically independent machines, which are electrically and mechanically coupled. Specific problems of polyphase machines can thus be favorably analyzed with this concept. Rules of conception and constraints on electric supply can be deduced. Moreover the vectorial approach, which generalizes the complex phasor method, can also be used to control n-leg Voltage Source Inverters. This methodology is applied to 3-phase and 6- phase synchronous machines

    Predetermination of Currents and Field in Short-Circuit Voltage Operation for an Axial-Flux Permanent Magnet Machine

    Get PDF
    Risk of irreversible magnet demagnetization during short-circuit fault is analyzed in case of an axial-flux dual-rotor machine, using a three-dimensional finite-element method (3D-FEM). In order to validate the numerical model, calculated waveforms of the currents are compared with experimental results for short-circuit at low speeds. Then currents and magnetic flux density inside the magnets are computed for short-circuit at higher speeds in order to predetermine the maximum admissible speed for the machine

    Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings

    Get PDF
    The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive
    • 

    corecore